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Using field theoretic renormalization, an MBE-type growth process with an obliquely incident influx of
atoms is examined. The projection of the beam on the substrate plane selects a “parallel” direction, with
rotational invariance restricted to the transverse directions. Depending on the behavior of an effective aniso-
tropic surface tension, a line of second-order transitions is identified, as well as a line of potentially first-order
transitions, joined by a multicritical point. Near the second-order transitions and the multicritical point, the
surface roughness is strongly anisotropic. Four different roughness exponents are introduced and computed,
describing the surface in different directions, in real or momentum space. The results presented challenge an
earlier study of the multicritical point.
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I. INTRODUCTION

The fabrication of numerous nanoscale heterostructures
requires the controlled deposition of material onto a sub-
strate. A variety of deposition processes are used, depending
on desired surface structure and device performance. Mo-
lecular beam epitaxy �MBE�, involving directed beams of
incident atoms, is particularly suitable if lower growth tem-
peratures and precise in situ control and characterization are
desired �1�. It is an important goal of both theoretical and
experimental investigations to gain an understanding of the
resulting surface morphology, in terms of its spatial and dy-
namic height-height correlations or, more specifically, its
roughness.

Beyond the obvious implications for nanoscale devices,
surface growth problems also constitute an important class of
generic nonequilibrium phenomena �2�. Particles are depos-
ited on the surface and may diffuse around on it. If deposi-
tion occurs from a vapor, desorption and/or bulk defect for-
mation tend to be important processes; in contrast, both
mechanisms can often be neglected in MBE �see, for ex-
ample, Ref. �3��. After an initial transient, a steady state is
established which is characterized by time-independent mac-
roscopic properties, provided a suitable reference frame is
chosen. Generically, detailed balance is broken by the inci-
dent particle flux �4�, so that this steady state cannot be de-
scribed by a Boltzmann distribution; instead, its statistical
properties have to be determined directly from its dynamical
evolution. If one is primarily interested in universal, large
scale, long time characteristics, the dynamical evolution can
often be cast as a Langevin equation which can be analyzed

using techniques from renormalized field theory.
Here, we extend a model �5� due to Marsili et al. to de-

scribe MBE-type or ballistic deposition processes with ob-
lique particle incidence. Focusing on large scale properties
such as surface roughness, we exploit a coarse-grained �con-
tinuum� approach. Adopting an idealized description �6–9�,
particle desorption and bulk defect formation will be ne-
glected so that all �deterministic� surface relaxation pro-
cesses are mass-conserving, i.e., can be written as the gradi-
ents of equilibrium and nonequilibrium currents. Shot noise
in the deposition process requires the addition of a stochastic
term to the growth equation. Since the particle beam selects
a preferred �“parallel”� direction in the substrate plane, the
resulting Langevin equation is necessarily anisotropic. The
interplay of interatomic interactions and kinetic effects, such
as Schwoebel barriers, generates an anisotropic effective sur-
face tension which can become very small or even vanish.
Due to the anisotropy, this leads to four different regimes
with potentially scale-invariant behaviors. We analyze these
four regimes, identify the scale-invariant ones, and compute
the associated anisotropic roughness exponents.

Models with oblique particle incidence have been inves-
tigated previously. Focusing on vapor-deposited thin films,
Meakin and Krug �10–12� considered the ballistic deposition
of particles under near-grazing incidence. Under these con-
ditions, columnar patterns form which shield parts of the
growing surface from incoming particles. The large scale
properties of these structures can be characterized in terms of
anisotropic scaling exponents, differentiating parallel and
transverse directions �12,13�.

Following Marsili et al. �5�, our model differs from Krug
and Meakin’s approach in two important respects. First, sur-
face overhangs and shadowing effects are neglected so that
our results are restricted to near-normal incidence. Second,
our model is designed for “ideal MBE”-type growth so that it*Electronic address: schmittm@vt.edu
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falls outside the Kardar-Parisi-Zhang universality class �14�
for mass nonconserving growth. However, extending the
work of Marsili et al. �5�, we include a possibly anisotropic
effective surface tension and investigate its effects systemati-
cally �see further comments in the following section�. Due to
the anisotropy, this contribution actually consists of two
terms, one controlling relaxation parallel and the other trans-
verse to the beam direction, with coupling constants �� and
��, respectively. Depending on which of these two cou-
plings, �� or ��, vanishes first, ripplelike surface structures
are expected, aligned transverse to the soft direction. The
roughness properties near these two instabilities, character-
ized respectively by ��=0 while �� �0, and ���0 while
�� =0, are discussed in this paper.

The original theory of Marsili et al. �5� is recovered only
if both couplings, �� and ��, vanish simultaneously. Since the
latter requires the careful tuning of two parameters, it is
much less likely to be experimentally relevant than either of
the other two instabilities in which only a single parameter
must be adjusted. Referring all technical details to a separate
publication �15�, we will point out very briefly that the fixed
point and the roughness exponents reported in Marsili et al.
�5� must be significantly revised.

An important aspect discussed in this article is how to
translate surface data into roughness exponents, for inher-
ently anisotropic surface models such as the one analyzed
here. If we generalize the standard definitions familiar from
isotropic problems, we arrive at four different roughness ex-
ponents �16�. Two of these characterize real-space scans
along and transverse to the beam direction, and the remain-
ing two are needed to describe scattering �i.e., momentum
space� data with parallel or transverse momentum transfer.
All four are related by simple scaling laws, but possess dis-
tinct numerical values. When analyzing experimental data, it
is therefore essential to be aware of these subtleties.

The paper is organized as follows. We first present the
underlying Langevin equation for a single-valued height field
and briefly review the physical origin of its constituents. We
then present a careful definition of the roughness exponents,
based on height-height correlation functions and their struc-
ture factors. Turning to the renormalization group �RG�
analysis, we first discuss a simple scaling symmetry of our
model which allows us to identify a set of effective coupling
constants. The invariance of our model with respect to tilts of
the surface is much more powerful. Since this symmetry is
continuous, it gives rise to a Ward identity which relates
different vertex functions. This simplifies the renormalization
procedure considerably. We then present our main results for
the scaling properties of correlation and response functions
for the four different cases: �o� both �� and �� are positive;
�i� �� remains positive while �� vanishes; �ii� �� vanishes
while �� remains positive; and, finally, �iii� both �� and ��

vanish simultaneously. Roughness and dynamic critical ex-
ponents are derived. We conclude with a short summary and
a discussion of the experimental evidence.

II. THE MODEL

We focus on long time, large distance phenomena of the
growing surface. Under suitable conditions �5�, surface over-

hangs and shadowing effects may be neglected, so that the
surface can be described by a single-valued height field,
h�r , t�, where r denotes a d-dimensional vector in a reference
�substrate� plane, the z axis is normal to that plane, and t
denotes time �see Fig. 1�. The no-overhang assumption can
be justified a posteriori if the calculated interface roughness
exponents are found to be less than unity. The time evolution
of the interface is described by a Langevin equation of the
form

�th = G�h� + � . �1�

Here, � denotes the effects of shot noise, and G�h� models
the deterministic part of the surface evolution, assumed to be
mass conserving in a suitable coordinate system so that G�h�
can be written as a divergence, G�h�=� ·F�h�. One contribu-
tion to G�h� is due to the incident flux; the other contribution
arises from surface diffusion. All of these contributions can
be derived using the principle of reparametrization invari-
ance �17� and are discussed in the following.

As shown in Fig. 1, the incident particle current has a
normal component Jz and a component parallel to the sub-
strate plane, J�. In the following, the coordinate system is
rotated such that one of the axes, labeled x�, is aligned with
J�. The particles themselves are of finite size with radius ro,
which implies that the flux responsible for growth at some
point on the surface is to be measured at a distance r normal
to the surface �see Fig. 2�. This effect has been discussed in
detail in the literature, see �17–19�. Neglecting higher order
terms in the spirit of a gradient expansion, to leading order,
this effect gives rise to a deterministic term of the form

Gdrive�h� = − Jz + J� · �h + roJz�
2h − ro�J� · �h��2h . �2�

Most remarkably, so-called “steering” leads to the same
terms in leading order �20�. Steering implies that deposited
atoms are deflected towards the surface normal as soon as
they reach a certain distance above it, due to an attractive
force exerted by the particles in the deposit. Returning to Eq.
�2�, we note that the first two terms in Gdrive�h� can be re-
moved by a Galilei transformation h�r , t�→h�r+J�t , t�−Jzt.
From now on, we always work in this co-moving frame.

In addition to being driven by the incident flux, Eq. �2�,

FIG. 1. Cartoon of the arrangement of surface and incoming
flux. The field h�x , t� is the height of the interface over the sub-
strate. Its coordinate system can always be chosen such that x� is
parallel to the projection of the flux on the substrate. The remaining
component of the latter is the �negative� flux Jz.
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the surface also relaxes via diffusion along the surface, lead-
ing to a quartic term of the form �21�

Grelaxation = − ��4h . �3�

In the following, terms of the form ��2h play a particularly
important role, since they determine which of the various
critical regimes can be accessed. Equation �2� already con-
tains such a term, induced by Jz, but other contributions of
this type are possible, e.g., a negative term from a step edge
�Schwoebel� barrier �7,22,23� or a positive one due to a sur-
face tension. Moreover, even if such a term were initially
absent, it would actually be generated under renormalization
group transformations and is therefore intrinsically present.
In contrast to Marsili et al. �5�, we include it from the very
beginning.

It is essential to note that the nonlinear term in Eq. �2�,

ro�J� · �h��2h � ����h��2h ,

introduces an anisotropy into the system which breaks the
full rotational symmetry within the d-dimensional space of
the substrate. As a consequence, there is no reason to expect
isotropic coupling constants �such as � or �� for the linear
contributions. Instead, any coarse-graining of the micro-
scopic �atomic level� theory is expected to give rise to dif-
ferent couplings �such as �� and ��� in the parallel and per-
pendicular subspaces, and this is indeed confirmed by the
renormalization group. If these anisotropies are incorporated
into the theory, preserving only rotational invariance in the
�d−1�-dimensional transverse subspace, the Langevin equa-
tion �1� takes the form

�−1�th = ����
2h + ����

2 h − ����
4h − 2����

2 ��
2h

− �����
2 �2h + ���h������

2h + ����
2 h� + �

= − ��j� − ��j� + � �4�

where we have introduced an explicit time scale for conve-
nience. The surface currents are given by

j� = − �����h − ����
2h − ����

2 h� −
��

2
���h�2 +

��

2
���h�2,

j� = − �����h − ����
2 h − ����

2h� − �����h����h� . �5�

The scalar differential operator �� operates only along x�

�see Fig. 1�, while the vector �� operates in the
�d−1�-dimensional subspace perpendicular to x�. We also
note that the nonlinearity now splits into two distinct terms,
with couplings �� and ��, respectively. Finally, the con-
served nature of the deterministic surface evolution is dis-
played explicitly here.

The randomness of particle aggregation on the surface is
captured by the nonconserved white noise ��r , t� with zero
average and second moment

���r,t���r�,t��� = 2�−1	�r − r��	�t − t�� . �6�

Equation �4� forms the basis for the following analysis. Its
properties are controlled by the dominant terms in the gradi-
ent expansion. To ensure the stability of the linear theory, we
require �� ,���0, and ��
−������1/2. The two couplings
�� and �� play the role of critical control parameters. If both
are positive, the nonlinearities become irrelevant, and the
problem reduces to the well-known Edwards-Wilkinson
equation �24�. In contrast, if one or both of them vanish, the
long time, long distance properties of the theory change dra-
matically: The surface undergoes an instability and forms
characteristic spatial patterns. If just one of the couplings
goes soft, these patterns take the form of ripples �similar to
corrugated roofing� transverse to the soft direction. If both
couplings become negative, the surface develops mounds or
“wedding cakes” �2�. Focusing only on the onset of these
instabilities, four different cases emerge whose properties are
discussed in the following: �o� the “disordered” phase, cor-
responding to the linear theory with �� �0, ���0; �i� a line
of continuous transitions �� �0, ��→0; �ii� a line of possibly
first order transitions ��→0, ���0; and �iii� the multicritical
�critical end-� point ��→0, ��→0. Before we turn to any
technicalities, however, we first discuss an important physi-
cal issue, namely, the definition of appropriate roughness ex-
ponents.

III. ANISOTROPIC ROUGHNESS EXPONENTS

The roughness of the surface, and the associated rough-
ness exponents, if they exist, are easily measured experimen-
tally. They can be determined from real-space images of the
surface or from scattering data in momentum space. Within
our theoretical framework, roughness exponents can be ex-
tracted from the height-height correlation function,

C�r − r�,t − t�� � �h�r,t�h�r�,t��� . �7�

Since we focus on the steady state in the absence of spatial
boundaries, we assume translational invariance in space and
time. The spatial Fourier transform of C is the dynamic
structure factor,

C�q,t� =	 ddrC�r,t�eiq·r.

In the absence of anisotropies, the asymptotic scaling behav-
ior of Eq. �7� can be written in the form

FIG. 2. Schematic representation of the growth inhibition and
amplification by either finite adatom radii �ro� or steering. In both
cases, the flux contributing to growth at some point on the surface is
to be measured a distance ro normal to the surface. The left box
shows the reduced effective surface in valleys, the right one the
corresponding effect on peaks �19,20�.
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C�r,t� = 
r
2�c�t/
r
z� �8�

where � denotes the roughness exponent and z the dynamic
exponent of the surface while c is a universal scaling func-
tion. In Fourier space, the behavior of C�r , t� translates into

C̃�q,t� = 
q
−�d+2��c̃�t
q
z� . �9�

In the presence of strong anisotropy, where the scaling of
the correlation function depends on the direction, the situa-
tion becomes more complex. Anticipating some of the fol-
lowing results, a key finding of the present article is the
existence of four different roughness exponents, characteriz-
ing the surface along the parallel or transverse directions, in
real or in momentum space. While they are directly related
by scaling laws, it is essential to realize that they take differ-
ent numerical values. In the interpretation of actual experi-
mental data, it is therefore important to identify the appro-
priate member of this set of four exponents in order to
compare with theoretical predictions.

In our scaling analysis below, we adopt the conventional
exponent definitions from critical dynamics. The exponent �
controls the divergence of the correlation length, while �
denotes the anomalous dimension of the height field which
appears in all correlation functions. Due to the presence of
anisotropy, an additional exponent, i.e., the strong anisotropy
exponent , is required to reflect the different scaling of
distances or wave vectors in different directions �16�. If l
denotes an arbitrary transverse momentum scale, so that

q�
� l, we introduce  via q� � l1+. With this definition, one
finds that, asymptotically, the structure factor is a generalized
homogeneous function of its variables

C̃�q�,q�;t� = l−4+�C̃�q�/l1+,q�/l,lzt� , �10�

and in real space, the two-point function takes the form

C�x�,r�;t� = ld+−4+�C�l1+x�,lr�,lzt� . �11�

In analogy to Eq. �8� two roughness exponents are defined in
real space, �� and ��, via

C�0,r�;t� � 
r�
2��c��t/
r�
z� ,

C�x�,0;t� � 
x�
2��c��t/x�
z/�1+�� . �12�

Of course, this is only meaningful if the two scaling func-
tions c� and c� approach finite and nonzero constants when
their arguments vanish. Under this assumption, the two ex-
ponents

�� = 1
2 �4 − �d + � − �� ,

�� = 1
2 �1 + �−1�4 − �d + � − �� �13�

are read off immediately. In order to define the correspond-
ing exponents in momentum space, �̃� and �̃�, we focus on
two structure factors which are easily accessible experimen-
tally, especially if we set t=0:

C̃�0,q�,t� � 
q�
−�d+2�̃��c̃��t
q�
z� ,

C̃�q�,0,t� � q�
−�d+2�̃��c̃��tq�

z/�1+�� . �14�

Again, provided the scaling functions c̃� and c̃� are nonsin-
gular and nonzero in the limit of vanishing argument, one
reads off

�̃� =
1

2
�4 − d − �� ,

�̃� =
1

2
� 4 − �

1 + 
− d� . �15�

The key observation is that �̃�=�� and �̃� =�� only if the
anisotropy exponent  vanishes. Thus, contrary to Eqs. �8�
and �9�, which are equivalent definitions of the roughness
exponent in isotropic systems, the corresponding definitions
for anisotropic systems will typically give rise to different
exponents.

In the following, we explicitly compute the scaling expo-
nents in the previous expressions, and also confirm the un-
derlying scaling form. To unify the discussion, we first recast
the Langevin equation as a dynamic field theory, collect the
elements of perturbation theory, and then identify the upper
critical dimensions and marginal nonlinearities for the four
cases. Our final goal is a systematic derivation of the scaling
properties of correlation and response functions.

IV. RENORMALIZATION GROUP ANALYSIS

A. Power counting and mean-field exponents

In this section, we assemble the basic components of the
field-theoretic analysis, leaving technical details to �15�. The
formalism becomes most elegant if we introduce a response

field h̃�r , t� and recast the Langevin equation �4� as a dy-

namic functional J�h̃ ,h�, following standard methods
�25–27�:

J�h̃,h� = �	 ddxdt�h̃��−1�th + ��j� + ��j�� − h̃2� . �16�

This has the advantage that both correlation and response
functions can be computed as appropriate functional aver-
ages, with statistical weight exp�−J�. The analysis can be
simplified considerably if we exploit the symmetries of

J�h̃ ,h�, using the explicit forms of the currents, Eq. �5�.
First, the symmetry h�r , t�→h�r , t�+a implies invariance un-
der a coordinate shift in the z direction. Second, the theory is
invariant under tilts of the surface by an infinitesimal “angle”
b, i.e., h�r , t�→h�r , t�+b·r provided the tilt is accompanied
by a transformation of the couplings, namely, ��→�� −b���

and ��→��−b���. Third, particle conservation on the
surface leads to invariance under the symmetry transfor-

mation h̃�r , t�→ h̃�r , t�+c, h�r , t�→h�r , t�+2c�t. Finally,
we have a symmetry under inversion, namely, h�x� ,r� , t�
→−h�−x� ,r� , t�, h̃�x� ,r� , t�→−h̃�−x� ,r� , t�. The most im-
portant of these symmetries is the tilt invariance. Thanks to
the associated Ward-Takahashi identity �28,29�, the renor-
malizations of �� and �� can be related to those of �� and ��,
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so that some exponent relations will be valid to all orders in
perturbation theory �15�.

Due to the anisotropy, there are two independent length
scales. If only parallel lengths are rescaled, via x�→�x�, the

functional remains invariant provided h→�−1/2h, h̃

→�−1/2h̃ and ��→�4��, ��→�2��, ��→�2�� while ��

→�7/2�� and ��→�3/2��. Likewise, if only transverse
lengths are rescaled, via r�→�r�, the functional remains

invariant provided h→�−�d−1�/2h, h̃→�−�d−1�/2h̃ and ��

→�4��, ��→�2��, ��→�2�� while ��→��d−1�/2�� and
��→��d+3�/2��. As a result, the theory naturally gives rise to
effective expansion parameters which are invariant under
these rescalings. The precise forms of these parameters differ
slightly for the four cases and will be discussed next.

In addition to these purely spatial rescalings, we can per-
form a more general dimensional analysis of Eq. �16�, in-
volving both spatial and temporal degrees of freedom. It is
standard to express it in terms of an external length scale �−1.
The key to the scaling of different terms in the functional lies
in the behavior of the control parameters �� and ��. Depend-
ing on whether they vanish or remain finite, the Gaussian
part of the dynamic functional is dominated by different
terms in the �infrared� limit of small momenta and frequen-
cies.

Case o. If both �� and �� are finite and positive, the theory
turns out to be purely Gaussian. Quartic derivatives can be
neglected in the infrared limit. It is natural to scale both
parallel and transverse momenta by �, via 
q�
�q� ��. As a
result, time scales as �−2 and the fields have dimensions

h�r , t����d−2�/2 and h̃�r , t����d+2�/2 so that the nonlinear cou-
plings scale as �� �����−d/2 and are therefore irrelevant in
any dimension d�0. The resulting theory is a simple aniso-
tropic generalization of the Edwards-Wilkinson equation
�24�,

�−1�th = ����
2h + ����

2 h + � .

The anisotropies in the quadratic terms affect only nonuni-
versal amplitudes and can be removed by a simple rescaling,
without losing any information of interest. As is well known,
the two-point correlation function scales as

C�r,t� = 
r
2−dc�t/
r
2�

from which one immediately reads off the �isotropic� rough-
ness exponent �= �2−d� /2 and the dynamic exponent z=2.
Since this case is so familiar �see Ref. �2� for a detailed
discussion�, it does not need to be considered further.

Case i. If �� remains finite and positive but �� vanishes,
the two leading �Gaussian� terms in the dynamic functional

are ��h̃���
2 �2h and ��h̃��

2h. This suggests that parallel and
transverse momenta scale differently, already at the Gaussian
level, namely, 
q�
�� and q� ��2. If we rewrite the scaling
of parallel momenta as q� ��1+, the anisotropic scaling ex-
ponent  equals unity for the Gaussian theory. Time scales as
�−4, and ����2 is strongly relevant. �� can be set to 1 by a
transverse rescaling with an appropriate �, and �� ���

��−2 are strongly irrelevant �in the renormalization group
sense�. Introducing the effective dimension D=d+1, one

finds h�r , t����D−4�/2 and h̃�r , t����D+4�/2. For the nonlinear
couplings, we obtain �����4−D�/2 and �� ��−D/2. Since D is
clearly positive, the coupling �� becomes irrelevant. The up-
per critical dimension dc for the theory is determined by ��,
via 0=4−D which leads to dc=3. The invariant dimension-
less effective expansion parameter is ��

−3/4����d−3�/2 as
shown by the rescaling ��→�3/2��, ��→�2��. At the
Gaussian level, this case corresponds to a critical line param-
etrized by ��. The mean-field values for the roughness expo-
nents are simple: In real space, one has �� = �3−d� /4 and
��= �3−d� /2 while the momentum space exponents are
given by �̃� = �2−d� /2 and �̃�= �4−d� /2. While the poten-
tially negative value of �̃� might appear startling, it is simply
a consequence of forcing Eq. �10� into the form of Eq. �14�.

Case ii. Here, �� remains finite while �� vanishes. The

Gaussian part of the functional is dominated by h̃��
4h and

��h̃��
2 h. Again, even at the tree level, parallel and transverse

momenta scale differently: now, q� �� and 
q�
��1+ with
=1. Time scales as �−4. The strongly relevant perturbation

is �� ��2. One may still write h�r , t����D−4�/2 and h̃�r , t�
���D+4�/2 but the appropriate effective dimension is now D
��d−1��1+�+1. The two nonlinearities switch roles so
that �� ���6−D�/2 and ����−D/2. In this case, ��, ��, and
�� are irrelevant while �� becomes marginal at the upper
critical dimension dc=7/2. The invariant dimensionless ef-
fective expansion parameter follows from the rescalings as
��

−7/8�
�

−�d−1�/4����2d−7�/2. Again, it appears as if this case cor-
responds to a critical line parametrized by ��. However, we
will see below that the order of the transition may well be-
come first order once fluctuations are included. We therefore
refrain from quoting mean-field roughness exponents here.

Case iii: Finally, we consider the multicritical point where
both �� and �� vanish. Both momenta scale identically, as
q� � 
q�
��, so that =0 at the tree level. We choose � so
that �� scales to 1. One obtains �t��−4, �� �����2, and

h�r , t����D−4�/2, h̃�r , t����D+4�/2, with D=d. Both nonlinear
couplings, �� and ��, have the same upper critical dimension
dc=6. The effective expansion parameters are w��� /��,
u� ���

−7/8����d−6�/2, and u����
−3/8����d−6�/2. In this case, the

anisotropy exponent  vanishes at the tree level so that, to
this approximation, all four roughness exponents are equal,
given by �4−d� /2. We will see, however, that this changes
already in first order of perturbation theory.

In the following, we compute the scaling properties of
correlation and response functions for the physically most
interesting case �i� in a one-loop approximation. Our findings
for cases �ii� and �iii� are reviewed only briefly, leaving the
full technical analysis to �15�.

B. The one-loop approximation

We use dimensional regularization combined with mini-
mal subtraction �28,29�. The basic building blocks of the
perturbative analysis are the one-particle irreducible vertex

functions �Ñ,N��q ,��� with Ñ �N� h �h̃� amputated legs. The
notation �q ,�� is shorthand for the full momentum- and
frequency-dependence of these functions. Focusing on the
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ultraviolet singularities, only those �Ñ,N with positive engi-
neering dimension need to be considered. Taking into ac-
count the symmetries and the momentum dependence carried
by the derivatives on the external legs, the set of naively
divergent vertex functions is reduced to �1,1 and �1,2 which
are computed to one-loop order. Some technical details are
relegated to the Appendix.

1. Case i: ��\0 and �¸�0

This is the simplest nontrivial case. Only one parameter,
��, needs to be tuned to access criticality. Since �� is irrel-
evant, it may be set to zero. Neglecting all other irrelevant
terms as well, the functional simplifies to

J�h̃,h� = �	 ddxdt�h̃��−1�t + ���
2 �2 − ����

2 − ����
2 �h

− h̃2 − ��h̃���h���
2 h� . �17�

Thanks to the momentum dependence of the nonlinear

term, ��h̃���h���
2 h, all divergences in �1,1 and �1,2 are al-

ready logarithmic and appear as simple poles in ��dc−d. In
a minimal subtraction scheme, we focus exclusively on these
poles and their amplitudes to extract the renormalizations.
Since the nonlinearity is cubic in the field, the expansion is
organized in powers of ��

2 , i.e., the first correction to the tree
level is always quadratic for �1,1 and cubic for �1,2. The tilt
invariance leads to a Ward identity connecting �1,1 and �1,2,
so that only the divergences in �1,1 need to be computed
explicitly. Specifically, the tilt transformation h�r , t�
→h�r , t�+b·r, ��→��−b��� shows that the parameter b
renormalizes as the field h itself. Hence, the term ��h is
renormalized by the same factor as ��.

Considering the perturbative contributions to �1,1�q ,��
further, we note that all of them carry external momenta,

indicating that the terms h̃�th and �h̃2 do not acquire any
corrections. Moreover, particle conservation in conjunction
with invariance under parallel inversion and transverse rota-

tions prevents the emergence of corrections to the ��h̃��
2 h

term, at any order in perturbation theory. Hence, we should
expect only two nontrivial renormalizations in �1,1, namely
those for the field h and for the parameter ��. Leaving the
detailed calculations of the renormalized quantities to the
Appendix, we seek an infrared stable fixed point for the ef-
fective dimensionless coupling u, defined as

u � A���
−3/4�−�/2��, �18�

where A� is a simple geometric factor, defined in the Appen-
dix. A careful analysis of the flow equations for the renor-
malized parameters reveals the presence of a single infrared
stable fixed point, at

u* = ± 4�

3
�1 + O���� , �19�

where the sign is given by the sign of the initial coupling
constant ��. To obtain the scaling properties of correlation
and response functions, we exploit the fact that the bare
theory is independent of the external momentum scale �. The

resulting partial differential equation �the renormalization
group equation� and its solution are discussed in the Appen-
dix. It predicts, specifically, the scaling form of the height-
height correlation function, C�r , t�. Including the critical pa-
rameter, ��, in its list of arguments, we find

C�r,t;��� = ld+−4+�C�l1+x�,lr�,lzt;l−1/����� , �20�

where l is an arbitrary flow parameter. This behavior of
C�r , t� is clearly a natural anisotropic generalization �16� of
the usual scaling form of critical dynamics. Moreover, it is
clearly consistent with the anticipated scaling behavior, Eq.
�11�, especially if we set ��=0. The exponents ��, �, and z
have their usual meanings: �� controls the scaling of the
strongly relevant coupling ��, � is the anomalous dimension
of the field and controls critical correlation functions, and z is
the dynamic exponent, relating spatial and temporal fluctua-
tions at criticality.  is the strong anisotropy exponent intro-
duced in Sec. III. Exploiting the symmetries of the theory
fully �see Appendix�, we find that ��, �, and z are related by
scaling laws which are exact �at least within perturbation
theory�:

z = 4 − � and 1/�� = 2 − � .

Assuming that u* remains nonzero at higher orders of pertur-
bation theory, its flow equation gives us another exact scaling
law, relating  and �:

 + � = 2 − d/3.

As a consequence, only a single exponent, e.g., �, has to be
computed order by order in perturbation theory. Our one-
loop calculation results in

� = − 2�/3 + O��2� . �21�

Now, all others follow from exponent identities which are
exact, at least as long as there are no nonperturbative correc-
tions.

2. Case ii: �¸\0 and ���0

This is the second nontrivial case. Neglecting irrelevant
terms, the dynamic functional simplifies to

J�h̃,h� = �	 ddxdt�h̃��−1�t + ����
4 − ����

2 − ����
2 �h

− h̃2 − ��h̃���h���
2h� �22�

and the upper critical dimension is now dc=7/2.
Following the same approach as in the previous case, we

first seek an infrared stable fixed point. The existence of such
a fixed point guarantees that the model exhibits a scale-
invariant regime where roughness exponents can be defined.
As before, we define a suitable effective coupling u
���

−7/8�
�

−�d−1�/4����2d−7�/2 and analyze its flow. In this case,
however, we find no stable fixed points corresponding to
physically meaningful �i.e., real� values of the coupling u, at
least to this order in perturbation theory �15�. The lack of
such fixed points often indicates a first-order transition, but
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only a more detailed analysis of the underlying mean-field
theory or a careful computational study will resolve this is-
sue.

3. Case iii: �¸\0 and ��\0

Finally, we briefly review our results for the multicritical
point where both critical parameters vanish simultaneously.
This case was previously studied by Marsili et al. �5� in a
momentum shell decimation scheme. In this procedure, a
hard momentum cutoff prevents the emergence of ultraviolet
divergences in the momentum integrals. However, in theories
with strong anisotropy and nonlinearities carrying multiple
derivatives, the perturbative corrections depend on how the
cutoff is implemented, requiring extreme care. This may ex-
plain why we were unable to reproduce the earlier �5� results.
In contrast, our findings are easy to check, since our field-
theoretic approach does not suffer from these complications.

The full functional, defined by Eqs. �16� and �5�, now
comes into play. To ensure the stability of the critical theory
at the tree level, we demand ��q�

4+2��q�
2q�

2 + �q�
2 �2
0.

This limits the physical range of �� and �� to �� �0 and
���−��. To complicate matters further, both nonlinear
couplings, �� and ��, are marginal at the upper critical di-
mension dc=6. While the detailed calculations become more
involved, the technical analysis remains straightforward �15�.
In particular, thanks to the Ward identity, all renormalizations
can still be obtained from the two-point function, �1,1.

The key results are as follows. Again, we define appropri-
ate effective couplings. One of these,

w �
��

��

,

appears in the propagator and generates w-dependent alge-
braic coefficients in the perturbation expansion. The other
two,

u� � C���
−7/8�1 + w�−5/4���

�d−6�/2,

u� � C���
−3/8�1 + w�−5/4����d−6�/2,

control the nonlinear terms and are treated order by order in
perturbation theory. C� just absorbs some common geometric
constants. A careful analysis of the flow equations for these
three couplings shows �15� that there is only a single, physi-
cally meaningful infrared stable fixed point, given by

w* = 23

5
− 1 + O���, u�

* = 0,

u�
* = ±715 + 25

11
�1/2 + O��3/2� . �23�

This contradicts earlier results �5� where a fixed point with
u�

* �0 was supposedly found.
Exploiting the symmetries of our theory fully and assum-

ing that u�
* =0 remains valid to all orders in perturbation

theory �15�, we can determine the critical exponents associ-
ated with this model. Remarkably, we find that only a single

exponent must be computed explicitly within the � expan-
sion, e.g., . The scaling behavior of the height-height cor-
relation function obeys the general form given in Eq. �20�,
except that both critical parameters now appear, each with its
own scaling exponent, �� and ��, respectively. Again, this
confirms the anticipated scaling, Eq. �11�. The exponents,
however, take different values here, demonstrating that cases
�i� and �iii� fall into distinct universality classes. Our one-
loop calculation yields

 =
23 + 615

11
� + O��2� . �24�

The remaining exponents �, z, and �� do not acquire any
corrections beyond the tree results, so that

� = 0, z = 4, �� = 1
2

to all orders in perturbation theory. The exponent �� is related
to  through an exact scaling relation, namely,

�� =
2

d − 2 + 3
. �25�

These results are sufficient to evaluate the associated rough-
ness exponents.

V. RESULTS FOR THE ROUGHNESS EXPONENTS

To begin with, we recall that the scaling forms of the
two-point correlations for cases �i� and �iii� are indeed con-
sistent with Eq. �11�. We may therefore immediately express
the roughness exponents, Eqs. �13� and �15�, in terms of the
exponent  and � for the two universality classes.

For case �i�, characterized by ��→0 at positive ��, we
found only one independent exponent, namely �=−2� /3
+O��2� with =2−d /2−�. Writing all four roughness expo-
nents in terms of �, we arrive at expressions which are exact
to all orders in �=d−3:

�� = 1 − d/3, �� =
1 − d/3

3 − d/3 − �
,

�̃� = �4 − d − ��/2, �̃� =
4 − �

3 − d/3 − �
−

d

2
.

The mean-field values are easily recovered by setting �=0.
The physically most interesting case corresponds to a surface
grown on a two-dimensional substrate, i.e., d=2 and �=1.
For this situation, one obtains ��=1/3 and �� =1/9+O��2�
while �̃� =−2/9+O��2� and �̃�=4/3+O��2�. Remarkably,
the exponent ��=1/3 is actually exact, at least to all orders
in perturbation theory.

At the multicritical point, i.e., case �iii� with ��→0,��

→0, we found �=0 and a nontrivial . Hence,

�� =
1

2
�4 − �d + ��, �� =

4 − �d + �
2�1 + �

,
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�̃� =
1

2
�4 − d�, �̃� =

2

1 + 
−

d

2
.

All of them are negative near the upper critical dimension
dc=6. In order to access the physical �d=2� situation, one
has to set �=4 here which gives a huge anisotropy exponent,
�16.814, if one naively uses the one-loop result. While
roughness exponents can in principle be calculated, we
should not place much confidence in their numerical values.
Nevertheless, we still obtain testable predictions for this
case, namely, the general scaling form of the height-height
correlations as well as the scaling laws relating different ex-
ponents.

Needless to say, in the absence of an infrared stable fixed
point, the renormalization group gives us no information
about possible roughness exponents for case �ii� ����0, ��

→0�. In fact, if the scenario of a first-order transition line
applies, the whole concept of scaling exponents would be
misplaced.

VI. CONCLUSIONS

To summarize, we have analyzed the long time, large dis-
tance scaling properties of a surface growing under ideal
MBE-type conditions, subject to an incident particle beam
tilted away from the surface normal. This selects a particular
�“parallel”� direction in the substrate plane, so that the result-
ing growth equations for the �single-valued� height field are
spatially anisotropic. In particular, an effective surface ten-
sion becomes anisotropic, contributing the terms ����

2h
+����

2 h to the right-hand side of the Langevin equation. If
both of these parameters, �� and ��, are positive, the surface
is described by the Edwards-Wilkinson model. However, de-
pending on experimental control parameters such as tem-
perature, incident flux rate and angle, or particle size, either
�� or �� or both can vanish, generating significantly different
surface properties. Each of these three possibilities leads to a
distinct field theory with different upper critical dimension.
We find dc=3 if ��→0 at finite ��, dc=7/2 if ��→0 at finite
��, and dc=6 if both vanish. Only the first and the third cases
lead to scale-invariant behavior; the second one may in fact
trigger a first-order phase transition whose properties lie out-
side the scope of our RG techniques. Focusing on the first
and third cases, we find two distinct surface universality
classes. For both, we compute the scaling behavior of the
two-point height-height correlation function and carefully
extract four different roughness exponents. Two of these
characterize the height fluctuations of the surface in real
space, scanned either along the parallel or the transverse di-
rections; the remaining two characterize scattering data with
momentum transfer either along the parallel or the transverse
directions. When analyzing experimental data, care must be
taken in identifying the correct exponent.

Clearly, the third case requires the careful tuning of two
parameters, �� and ��. If we can substantiate the presence of
a first-order line for ��→0 at finite ��, the point �� =��=0
would in fact be a critical endpoint, since it separates a line
of second-order transitions from a line of first-order ones. In
order to access it in a typical experiment, at least two control

parameters have to be tuned very carefully, making it diffi-
cult to observe. For this reason, either the second- or the
first-order lines should be more accessible experimentally.
From the RG perspective, even if �� is set to zero initially, it
will be generated under RG transformations, resulting in a
nonzero value; this is not the case for the ����

2 h contribu-
tion. In that sense, we believe that the most physically rel-
evant theory �apart from Edwards-Wilkinson behavior� is the
one with �� �0 and ��=0. Amongst our key results for this
model are the roughness exponents for real-space surface
scans. For the physically most interesting case of a two-
dimensional surface, we find ��=1/3 if the fluctuations are
measured along the transverse direction, and �� =1/9
+O��2� for scans along the parallel direction. While the
value for �� may be modified by higher-order contributions
in perturbation theory, the result for �� is exact.

Finally, we turn to possible experimental evidence for
these exponents. Thin films of vapor-deposited gold on
smooth glass surfaces �30,31� were previously proposed �5�
as possible realizations of our theory. The deposit surfaces
were imaged by scanning tunneling microscopy �STM�, and
their mean-square width was measured as a function of STM
scan length, resulting in a roughness exponent of 0.35
�30,31�. The temperature is sufficiently low �T=298 K� so
that desorption is negligible. Even at small angles of inci-
dence �between 2° and 25°�, the growth is anisotropic. The
STM images �30� show some evidence for striped pattern
formation, if larger sample areas ��3�103 nm on each side�
are imaged. It is encouraging that a growth exponent close to
1/3 is observed since this matches our prediction for the
transverse direction; unfortunately, there seems to be no evi-
dence for the much smaller exponent �1/9� which should
control the parallel direction. A final resolution of these is-
sues has to await a more detailed analysis of the experimen-
tal data.
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APPENDIX: SOME DETAILS OF THE RG CALCULATION

In the following, some technicalities associated with case
�i� are presented. We will switch freely between the �q , t� and
the �q ,�� representations, depending on which one is more
convenient. We first collect the elements of perturbation
theory and then discuss the one-loop corrections. Neglecting
all nonlinearities in Eq. �17� allows us to identify the bare
propagator, G0�q , t�, and the bare correlator, C0�q , t�, via

G0�q,t�	�q − q�� � �h�q,t�h̃�− q�,0��0 = ��t�exp�− ��q��t� ,

C0�q,t�	�q − q�� � �h�q,t�h�− q�,0��0 = ��q�−1G0�q, 
t
� ,

�A1�

where
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��q� � ��q�
4 + ��q�

2 + ��q�
2 .

Here, �·�0 denotes a functional average with Gaussian ���

=0� weight. The Heaviside function ��t� is defined with
��0�=0. Turning to the interaction terms, it is convenient to
rewrite them in a symmetrized form. In Fourier space, the
expression for the three-point vertex reads

V�q1,q2,q3� � i����q1� · �q2�q3� + q2�q3�� − q1�q2� · q3��
�A2�

with q1+q2+q3=0. The sign convention is such that all mo-
menta attached to a vertex are incoming.

We are using dimensional regularization, so that ultravio-
let divergences appear as simple poles in ��dc−d, with dc
=3. In a minimal subtraction scheme, we focus exclusively
on these poles and extract the renormalization constants from
their amplitudes. Thanks to the symmetries of the theory, we
anticipate only two nontrivial renormalizations, namely those
for the field h and for the parameter ��, both of which can be
obtained from �1,1. To one loop order, the explicit expression
for the singular part of the two-point vertex function is given
by

�1,1�q,��pole = i� + � ���q�
2 + �q�

2 �2 + ��q�
2 �

+ �
u2

8�
�2��q�

2 − �q�
2 �2� + O�u4� , �A3�

where the effective expansion parameter u is given by

u � A���
−3/4�−�/2�� �A4�

and A� summarizes a geometric factor which appears in all
Feynman diagrams:

A� �
Sd−1

�2��d
���1 − �

2
���1 + �

2
� .

Sd is the surface area of the d-dimensional unit sphere.
Keeping in mind that there are only two nontrivial renor-

malizations to all orders, we introduce renormalized quanti-
ties via

h → h̊ = Z1/2h, h̃ → h̃
˚

= Z−1/2h̃, � → �̊ = Z�

�� → �̊� = Z−1��, �� → �̊� = Z−1Z��� ,

�� → �̊� = Z−3/2��.

The renormalized vertex function �1,1 is defined by demand-
ing that

�1,1�q,�,�,��,��,u,�� � �̊1,1�q,�,�̊, �̊�, �̊�,�̊�� �A5�

be pole-free. One finds

Z = 1 +
u2

8�
+ O�u4� ,

Z� = 1 −
u2

4�
+ O�u4� . �A6�

The corresponding Wilson functions are defined as the loga-
rithmic derivatives of the associated Z factors, at constant
bare quantities, i.e.,

� � 
��� ln Z
bare = −
u2

8
+ O�u4� ,

�� � 
��� ln Z�
bare =
u2

4
+ O�u4� . �A7�

The flow of the dimensionless effective coupling constant u
under renormalization is controlled by the Gell-Mann–Low
function,

��u� � 
���u
bare = u�−
�

2
+

3

4
�� + ����

= u�−
�

2
+

3

32
u2 + O�u4�� . �A8�

The renormalization group equation �RGE� for the Green
functions, i.e., the connected correlation functions with N

�Ñ� external h �h̃� legs, simply states that the bare theory is
independent of the external momentum scale �:

0 = �
d

d�
G̊N,Ñ��r,t�; �̊�, �̊�,�̊,�̊��

= �
d

d�
Z�N−Ñ�/2GN,Ñ��r,t�;��,��;u,�,�� .

In our case, this equation takes the form

��
�

��
+ �

�

�u
− ��

�

��
+ ���

�

���

+ �� − �����

�

���

+
�

2
�N − Ñ��GN,Ñ = 0. �A9�

Asymptotic scaling results from this partial differential equa-
tion at an infrared stable fixed point that is a solution of
��u*�=0 with ���u*��0. The one-loop approximation Eq.
�A8� leads to the stable fixed point

u* = ± 4�

3
�1 + O���� , �A10�

where the sign is given by the sign of the initial coupling
constant ��. Thus, u* is nonzero in the � expansion and,
making the reasonable assumption that this remains true to
all orders in perturbaton theory, we find from Eq. �A8� the
exact relation

�* + ��
* =

2�

3
, �A11�

where we have denoted the Wilson � functions, evaluated at
the fixed point, by a superscript �. Equation �A9� can be
solved easily at the fixed point u*, using the method of
characteristics, combined with dimensional analysis and the
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rescaling invariances. If we suppress unnecessary arguments,
the solution can be written in the form

GN,Ñ��r,t�;��� = l	N,ÑGN,Ñ��l1+x�,lr�,lzt�;l−1/���� ,

where l is an arbitrary flow parameter. The two critical ex-
ponents  and � can be expressed in terms of the Wilson
functions as

 = 1 +
��

* − �*

2
, � = �*, �A12�

while scaling laws give us the remaining exponents �, z, and
the overall scaling exponent 	N,Ñ:

z = 4 − �, 1/� = 2 − � ,

	N,Ñ =
N

2
�d +  − 4 + �� +

Ñ

2
�d +  + 4 − �� . �A13�

Finally, Eq. �A11� provides another exact scaling law relat-
ing  and �, provided u*�0 holds to all orders:

 + � = 2 − d/3.

As a consequence, only a single exponent, e.g., �, has to be
computed order by order in perturbation theory, and all oth-
ers follow from exponent identities.
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